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Abstract

The problem of a frictionally sliding interface crack embedded in an anisotropic bimaterial is investigated. Under

remote normal compressive and shear load the crack faces are treated as completely closed in the direction of the

normal load while in other directions the crack faces are allowed to slide. The frictional coefficient over the sliding zone

is assumed to be constant. A set of singular integral equations is formulated which is valid for general anisotropic

bimaterial. The nature of singularities for frictionally sliding bimaterial is investigated. It is found that for general

anisotropic bimaterial the problem may be treated as a homogeneous anisotropy as long as ~WW ¼ 0 and hence the

stresses developed on the frictional surface would be uniform for such bimaterial. If ~WW is not identically zero but with

ð ~WWÞ13 ¼ 0 and with the surface being frictionless then the stresses over the crack faces are square root singular. The

homogeneous anisotropy satisfying ð~LLÞ12 ¼ ð~LLÞ32 ¼ 0 would transmit the load freely across the crack faces without any

interference. For monoclinic bimaterial, the orders of singularities are found to depend on the material constant K and

the frictional coefficient f and are either of order d or 1� d depending on the direction of the frictional force. The

stresses on the interface for monoclinic bimaterial are also given explicitly.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Most of brittle materials such as ceramics, rocks, glasses and concrete etc. usually contain small and

grain-sized faults that can be simulated as the problem of cracks embedded in an infinite inhomogeneous

solid. When loaded in compression and shear, these cracks will propagate along the crack plane due to the

effect of sliding frictional stresses and the propagation will continue leading eventually to the final failure of

the structure. For some materials the sliding of the crack faces may even lead to the nucleation of tension

cracks starting at the tips of the crack resulting in the so-called branched cracks. Above problems have been
investigated by many researchers in the past two decades, but most of them are for isotropic materials. For

instance Hoek et al. (1984), Horii and Nemat-Nasser (1982), Gorbatikh et al. (2001), Lauterbach and Gross
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(1998), etc. As to isotropic bimaterial, a series of work have been done by Comninou and her co-workers

(1977a,b, 1983). Recently a center frictional interfacial crack in an isotropic bimaterial based on the as-

sumption of completely closed crack has been analyzed by Qian and Sun (1998). Their formulation is

through the singular integral equations. Here we adopt the same approach but the results are valid for
general anisotropic bimaterial.

In this paper, the problem of an interface crack embedded in an anisotrpic bimaterial is investigated. The

bimaterial is subjected to compressive and shear loading at infinity. The crack surfaces are assumed to be

able to slide in its own plane and the frictional coefficient is assumed to be constant over the sliding zone.

The remote compressive force is applied so that crack faces perpendicular to the sliding direction are as-

sumed to be completely closed. This problem is formulated in terms of a set of singular integral equations

where the unknowns in the equations are the dislocation densities. It is found that for general anisotropic

bimaterial the problem may be treated as a homogeneous anisotropy as long as ~WW ¼ 0 and hence the
stresses developed on the frictional surface would be uniform for such bimaterial. This is consistent with the

near-tip analysis of the order of singularities for ~WW ¼ 0 which is square root. If ~WW is not identically zero,

but with ~ww2 ¼ 0 and with the surface being frictionless then the stresses developed on the crack faces are

square root singular. The homogeneous anisotropy satisfying ð~LLÞ12 ¼ ð~LLÞ32 ¼ 0 would transmit the load

freely across the crack faces without any interference. As to monoclinic bimaterial, the in-plane defor-

mation is decoupled from the anti-plane part, however, the anti-plane part may have deformation due to

the frictional force induced by the in-plane load. The orders of singularities at the crack tips, which depend

on the material constant K and the frictional coefficient f , are either of order d or 1� d depending on the
direction of the frictional force. The dislocation densities and the stresses on the interface for monoclinic

bimaterial are evaluated analytically and the results for isotropic materials may be recovered.
2. Basic equations

It is known that the displacement field u ¼ ðu1; u2; u3ÞT of a general anisotropic elastic material that

undergoes a generalized plane strain deformation will satisfy, in the absence of body force, the following
governing equation:
Qu;11 þ ðRþ RTÞu;12 þ Tu;22 ¼ 0 ð1Þ
where Q, R, T are 3 · 3 matrices whose components are defined only by the material constants Cijks as
Q ¼ ½Qik� ¼ ½Ci1k1� ð2Þ

R ¼ ½Rik� ¼ ½Ci1k2� ð3Þ

T ¼ ½Tik� ¼ ½Ci2k2� ð4Þ
The general solutions of Eq. (1) may be expressed as (for more detailed information, please refer to Ting

(1996)):
u ¼
X3
a¼1

aafaðzaÞ þ
X3
a¼1

�aaafaþ3ð�zzaÞ ð5Þ
where fa are arbitrary functions and za ¼ x1 þ pax2. aa ða ¼ 1; 2; 3Þ and pa are determined through the

following eigenvalue problem
fQþ paðRþ RTÞ þ p2aTgaa ¼ 0 ðno sum on aÞ ð6Þ
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To evaluate the stresses, it would be convenient to construct the stress function as
/ ¼
X3
a¼1

bafaðzaÞ þ
X3
a¼1

�bbafaþ3ð�zzaÞ ð7Þ
where ba ða ¼ 1; 2; 3Þ are related to aa by
ba ¼ paðRT þ paTÞaa ðno sum on aÞ ð8Þ

and the stresses s1j and s2j ðj ¼ 1; 2; 3Þmay then be calculated by just differentiation of the stress function as
s1j ¼ �/j;2 and s2j ¼ /j;1 ð9Þ
In the present investigations, we are going to discuss the stress singularities at the tip of a crack with sliding

surfaces. For such an investigation, it would be more convenient to express the general solutions of the
displacement u (Eq. (5)) and the stress function / (Eq. (7)) in the following form
u ¼ Ahf ðz�Þiqþ Ahf ð�zz�Þi~qq ð10Þ

/ ¼ Bhf ðz�Þiqþ Bhf ð�zz�Þi~qq ð11Þ

where
A ¼ ½a1; a2; a3� ð12Þ

B ¼ ½b1; b2; b3� ð13Þ

hf ðz�Þi ¼
f ðz1Þ 0 0

0 f ðz2Þ 0

0 0 f ðz3Þ

2
4

3
5 ð14Þ

hf ð�zz�Þi ¼
f ð�zz1Þ 0 0

0 f ð�zz2Þ 0

0 0 f ð�zz3Þ

2
4

3
5 ð15Þ
and q and ~qq are arbitrary complex vectors.
3. Formulations of the problem

Let us consider an infinite bimaterial composed by two semi-infinite anisotropic materials. A crack with

finite length 2c is situated on the interface which may slide over its crack faces. The bimaterial is subjected

to shear stress S and normal compressive stress N at infinity. In the following analysis normal compressive
stress N is assumed to be always negative. Due to the remote compressive loading the surface of the crack is

assumed to be always closed in the direction of the compressive load, but is capable of sliding in its own

plane. The frictional force fN may be developed on the crack faces if the surfaces are not frictionless. Here f
is the frictional coefficient which is assumed to be constant over the crack faces in our analysis. Under these

assumptions, the investigations of this frictional crack problem may be proceeded by the technique of

modeling the crack by a continuous distribution of dislocations. Since the original problem is completely

linear, we may separate the problem into a bimaterial problem that is free of any cracks with stresses

t12 ¼ ðr1
21; r

1
22; r

1
23Þ

T
applied at infinity and another problem that is induced by distributed dislocations b

acting on the crack faces. The unknown densities of the distributed dislocations, which are to be sought, are

chosen so that the boundary conditions of original problem are satisfied. To formulate this problem along
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this line, the fundamental solution due to a single concentrated dislocation acting on the crack-free bi-

material has to be constructed. This fundamental solution is introduced briefly in the following.

Based on Ting�s solution (Ting, 1996), the fundamental solution for the displacement u and stress

function / due to a dislocation with Burger�s vector bð¼ ½b1; b2; b3�TÞ located on the interface of the bi-
material is
uð1Þ ¼ �1

p
ðln rÞ~SSb� ½Sð1ÞðhÞ~SS�Hð1ÞðhÞ~LL�b ð16aÞ

/ð1Þ ¼ �1

p
ðln rÞ~LLbþ ½Lð1ÞðhÞ~SSþ Sð1ÞTðhÞ~LL�b ð16bÞ
for material 1, x2 > 0 and
uð2Þ ¼ �1

p
ðln rÞ~SSb� ½Sð2ÞðhÞ~SS�Hð2ÞðhÞ~LL�b ð17aÞ

/ð2Þ ¼ �1

p
ðln rÞ~LLbþ ½Lð2ÞðhÞ~SSþ Sð2ÞTðhÞ~LL�b ð17bÞ
for material 2, x2 < 0, respectively. The matrices SðjÞðhÞ, HðjÞðhÞ and LðjÞðhÞ ðj ¼ 1; 2Þ in Eqs. (16a), (16b)

and (17a), (17b) are periodic in h with periodicity p. The matrices �SS, ~HH, ~LL of Eqs. (16a), (16b) and (17a),

(17b) at the interface (h ¼ 0; p) are defined as
~SS ¼ � ~HH�1ðSð1ÞT þ Sð2ÞTÞðHð1Þ þHð2ÞÞ�1 ¼ �ðLð1Þ þ Lð2ÞÞ�1ðSð1ÞT þ Sð2ÞTÞ~LL ð18aÞ

~HH ¼ fðLð1Þ þ Lð2ÞÞ þ ðSð1ÞT þ Sð2ÞTÞðHð1Þ þHð2ÞÞ�1ðSð1Þ þ Sð2ÞÞg�1 ð18bÞ

~LL ¼ fðHð1Þ þHð2ÞÞ þ ðSð1Þ þ Sð2ÞÞðLð1Þ þ Lð2ÞÞ�1ðSð1ÞT þ Sð2ÞTÞg�1 ð18cÞ

which show that all these matrices are defined in terms of matrices SðjÞ, HðjÞ and LðjÞ ðj ¼ 1; 2Þ, known as

Barnett–Lothe tensors. These Barnett–Lothe tensors are defined as
HðjÞ ¼ 2iAðjÞAðjÞT ; LðjÞ ¼ �2iBðjÞBðjÞT and SðjÞ ¼ ið2AðjÞBðjÞT � IÞ ð19aÞ

which are all real and it can be shown that the following relations may be established
SðjÞ ¼ SðjÞðpÞ; HðjÞ ¼ HðjÞðpÞ; LðjÞ ¼ LðjÞðpÞ: ð19bÞ

It is noted that matrices HðjÞ and LðjÞ possess the properties of symmetry and positive definite. When the

bimaterial is made of identical material, then
~SS ¼ 1

2
Sð1Þ ¼ 1

2
Sð2Þ; ~HH ¼ 1

2
Hð1Þ ¼ 1

2
Hð2Þ; ~LL ¼ 1

2
Lð1Þ ¼ 1

2
Lð2Þ ð19cÞ
Along the bimaterial interface, i.e., along x1-axis, the stress function, for example, /ð2Þ, may be written as
/ð2Þ ¼ 1

p
ðln jx1jÞ~LLb� Hð�x1Þ ~WWb ð20Þ
where HðxÞ is the Heaviside step function. It vanishes when x < 0 and has value 1 when x > 0. ~WW in Eq. (20)

is defined as ~WW ¼ Lð2Þ~SSþ Sð2ÞT ~LL which is skew-symmetric, the components of ~WW are as follows
~WW ¼
0 ~ww3 �~ww2

�~ww3 0 ~ww1

~ww2 �~ww1 0

2
4

3
5 ð21Þ
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With the known stress function due to a single dislocation applied on the interface, we may evaluate the

traction on the interface as follows
t2ðx1; 0Þ ¼
o/ð2Þðx1; 0Þ

ox1
¼ 1

px1
~LLbþ dðx1Þ ~WWb ð22Þ
where dðx1Þ is the delta function. Suppose now there are some dislocations with known densities distributed

on the interface over a finite length, then the total tractions induced by these distributed dislocations may be

obtained by just integrating the results of Eq. (22) with b replaced by the dislocation densities. Adding these

tractions induced by these distributed dislocations to the tractions due to the applied stress at infinity, the

total tractions t2 across the interface are therefore given as
t2ðx1; 0Þ ¼ t12 þ�1

p

Z c

�c

~LLbðnÞ
n� x1

dnþ ~WWbðx1Þ ð23Þ
where bðx1Þ is the dislocation densities distributed over the frictional crack zone ð�c < x1 < cÞ and

t12 ¼ ðr1
21; r

1
22; r

1
23Þ

T
is the stress applied at infinity. Since we are considering the problem of a crack capable

of transmitting normal stress in x2-direction which requires that the displacement jump vanish in that

direction. Moreover, we consider the crack faces which are able to slide in other directions under combined
compression and shear load. Therefore the following boundary conditions for the sliding crack faces,

jx1j < c, need to be satisfied
Duð1Þ �Duð2Þ ¼ 0 ð24aÞ

Ct
ð1Þ
2 ¼ 0 ¼ Ct

ð2Þ
2 ð24bÞ
where
C ¼
1 f 0
0 0 0

0 f 1

2
4

3
5; D ¼

0 0 0
0 1 0

0 0 0

2
4

3
5 ð24cÞ
and f is the frictional coefficient. Here we assume the frictional coefficients are the same in both x1- and x3-
directions. Outside the crack zone, i.e., jx1jP c, x2 ¼ 0, the displacements and tractions must be continuous
t
ð1Þ
2 ¼ t

ð2Þ
2 ; ð25aÞ

uð1Þ ¼ uð2Þ ð25bÞ

Hence applying the boundary conditions to Eq. (23), one obtains the set of singular integral equations for

the dislocation densities b as
Ct12 þ�1

p

Z c

�c

C~LLbðnÞ
n� x1

dnþ C ~WWbðx1Þ ¼ 0 ð26aÞ
Written explicitly, with t12 ¼ ðS;�N ; 0ÞT, the above equations become
�1

p

Z c

�c

~LL11 þ f ~LL12
~LL13 þ f ~LL23

~LL13 þ f ~LL21
~LL33 þ f ~LL23

� �
b1
b3

� �
dn

n� x1
þ �f ~ww3 f ~ww1 � ~ww2

~ww2 � f ~ww3 f ~ww1

� �
b1
b3

� �
¼ �S þ fN

fN

� �
ð26bÞ
with b2ðx1Þ ¼ 0 due to the assumption that crack faces are closed in x2-direction. To ensure unique solutions

for the integral equations, the following conditions have to be satisfied
Z c

�c
b1ðnÞdn ¼ 0 and

Z c

�c
b3ðnÞdn ¼ 0 ð27Þ
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Note that Eq. (26b) are coupled equations for unknowns b1 and b3. If the crack faces are frictionless, the

equations become
�1

p

Z c

�c

~LL11
~LL13

~LL13
~LL33

� �
b1
b3

� �
dn

n� x1
þ ð�~ww2Þ

0 1

�1 0

� �
b1
b3

� �
¼ �S

0

� �
ð28aÞ
These equations are still coupled. However if this frictionless bimaterial have further properties such that
~ww2 ¼ 0 then the solutions of these equations can be treated easily and the behavior of the dislocation

densities will possess the well known square root singularity. If the bimaterial are such that the following

condition
~ww2 ¼ f ð~ww1 þ ~ww3Þ ð28bÞ
is satisfied, then Eq. (26b) becomes
�1

p

Z c

�c

~LL11 þ f ~LL12
~LL13 þ f ~LL23

~LL13 þ f ~LL21
~LL33 þ f ~LL23

� �
b1
b3

� �
dn

n� x1
þ f

�~ww3 �~ww3

~ww1 ~ww1

� �
b1
b3

� �
¼ �S þ fN

fN

� �
ð28cÞ
Suppose the solid is a homogeneous medium, then equations become
�1

2p

Z c

�c

L11 þ fL12 L13 þ fL23

L13 þ fL21 L33 þ fL23

� �
b1
b3

� �
dn

n� x1
¼ �S þ fN

fN

� �
ð28dÞ
since ~WW ¼ 0 and 2~LL ¼ L for homogeneous solids.
4. Stress singularities at a closed frictionally interfacial crack

Before solving the singular integral equations for the dislocation densities derived in the previous section,
we would first discuss the stress singularities at the interface crack tip. Although the nature of singularities

at the frictionally closed crack tips for general anisotropic bimaterial may be analyzed directly from the

singular equations, it would be more straightforward to adopt the common approach of near-tip expansion

method. To do that, we may choose the complex function hf ðz�Þi in Eq. (10) to be in the form
hf ðz�Þi ¼ hzd�i
therefore the displacement field u and stress function / may be expressed as
u ¼ rdþ1fA < fdþ1
� ðhÞ > qþ �AA < �ffdþ1

� ðhÞ > ~qqg ð29aÞ

/ ¼ rdþ1fB < fdþ1
� ðhÞ > qþ �BB < �ffdþ1

� ðhÞ > ~qqg ð29bÞ
where
f�ðhÞ ¼ cosðhÞ þ p� sinðhÞ ð30Þ
Now, consider the bimaterial that consists of two dissimilar anisotropic half-planes. Let material 1 occupies

the upper half-plane
r > 0; 06 h6 p
while the lower half-plane
r > 0; �p6 h6 0
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is occupied by material 2. Employing Eqs. (29a) and (29b) for materials 1 and 2, we may have
uðiÞðr; hÞ ¼ rdþ1 AðiÞ
n

< fdþ1
� ðhÞ > qðiÞ þ �AAðiÞ < �ffdþ1

� ðhÞ > ~qqðiÞ
o

ð31aÞ

/ðiÞðr; hÞ ¼ rdþ1 BðiÞ
n

< fdþ1
� ðhÞ > qðiÞ þ �BBðiÞ < �ffdþ1

� ðhÞ > ~qqðiÞ
o

ð31bÞ
where the superscript ðiÞ ði ¼ 1; 2Þ represents quantities related to material 1 or 2, respectively. It is noted

that on the surface h ¼ 0 and h ¼ �p, variable defined in (30) takes the following special values
fðiÞ
dþ1

� ð0Þ ¼ 1; fðiÞ
dþ1

� ðpÞ ¼ eidp; fðiÞ
dþ1

� ð�pÞ ¼ �e�idp ð32Þ

Since the two anisotropic materials are perfectly bonded along the interface h ¼ 0 while the surfaces at

h ¼ �p are capable of sliding in both x1- and x3-directions and are always closed in x2-direction, hence the
continuities of displacements and tractions at the interface h ¼ 0 require
uð1Þj ðr; 0Þ ¼ uð2Þj ðr; 0Þ; /ð1Þ
j ðr; 0Þ ¼ /ð2Þ

j ðr; 0Þ; ðj ¼ 1; 2; 3Þ ð33Þ
while the sliding boundary conditions at h ¼ �p may be described as
uð1Þ2 ðr; pÞ ¼ uð2Þ2 ðr;�pÞ; ð34aÞ

rð2Þ
21 ðr;�pÞ ¼ �frð2Þ

22 ðr;�pÞ; rð2Þ
23 ðr;�pÞ ¼ �frð2Þ

22 ðr;�pÞ ð34bÞ

where f denotes the Coulomb�s friction coefficient. Eqs. (34a) and (34b) may be expressed in more compact
form as
Duð1Þðr; pÞ ¼ Duð2Þðr;�pÞ; Ctð1Þðr; pÞ ¼ 0 ¼ Ctð2Þðr;�pÞ ð34cÞ

where C and D are defined in Eq. (24c). Using the conditions that the surface h ¼ 0 should be perfectly

bonded, Eqs. (31a) and (31b) will lead to the following results
Að1Þqð1Þ þ �AAð1Þ~qqð1Þ ¼ Að2Þqð2Þ þ �AAð2Þ~qqð2Þ ð35aÞ

Bð1Þqð1Þ þ �BBð1Þ~qqð1Þ ¼ Bð2Þqð2Þ þ �BBð2Þ~qqð2Þ ð35bÞ

In order to apply the conditions at h ¼ �p, we need the displacement and stress function at the surface

h ¼ �p to satisfy
uðiÞðr;�pÞ ¼ �rdþ1 e�idpAðiÞqðiÞ
n

þ e�idp �AAðiÞ~qqðiÞ
o

ð36aÞ

/ðiÞðr;�pÞ ¼ �rdþ1fe�idpBðiÞqðiÞ þ e�idp�BBðiÞ~qqðiÞg ð36bÞ

Since the tractions are perfectly continuous along the sliding surface h ¼ �p, i.e.,
/ð1Þ
i ðr; pÞ ¼ /ð2Þ

i ðr;�pÞ; ði ¼ 1; 2; 3Þ ð37aÞ

use of above condition in Eq. (36b) would get
eidpBð1Þqð1Þ þ e�idp�BBð1Þ~qqð1Þ ¼ e�idpBð2Þqð2Þ þ eidp�BBð2Þ~qqð2Þ ð37bÞ

or
e2idpBð1Þqð1Þ þ �BBð1Þ~qqð1Þ ¼ Bð2Þqð2Þ þ e2idp�BBð2Þ~qqð2Þ ð37cÞ

Comparing (37c) and (35b), one finds that
qð2Þ ¼ ðBð2ÞÞ�1�BBð1Þ~qqð1Þ ð38aÞ
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~qqð2Þ ¼ ð�BBð2ÞÞ�1
Bð1Þqð1Þ ð38bÞ
Now considering the boundary conditions at h ¼ �p which are expressed in Eq. (34c). Enforcing these

conditions will lead to
eidpDAð1Þqð1Þ þ e�idpD�AAð1Þ~qqð1Þ ¼ e�idpDAð2Þqð2Þ þ eidpD�AAð2Þ~qqð2Þ ð39aÞ

eidpCBð1Þqð1Þ þ e�idpC�BBð1Þ~qqð1Þ ¼ 0 ð39bÞ

Adding these two equations, one obtains
eidpðCBð1Þ þDAð1ÞÞqð1Þ þ e�idpðC�BBð1Þ þD�AAð1ÞÞ~qqð1Þ ¼ e�idpDAð2Þqð2Þ þ eidpD�AAð2Þ~qqð2Þ ð40Þ

Substituting Eqs. (38a) and (38b) into (35a) and (40), one obtains
UBð1Þqð1Þ þUB
ð1Þ
~qqð1Þ ¼ 0 ð41Þ

e2idpðCþDUÞBð1Þqð1Þ þ ðC�D�UUÞ�BBð1Þ~qqð1Þ ¼ 0 ð42Þ

where
�iU ¼ Mð1Þ�1

þ �MMð2Þ�1

¼ D̂D� iŴW ð43Þ
and
MðjÞ ¼ �iBðjÞAðjÞ�1

; j ¼ 1; 2 ð44Þ

ŴW ¼
0 ŵw3 �ŵw2

�ŵw3 0 ŵw1

ŵw2 �ŵw1 0

2
4

3
5 ¼ Sð1ÞðLð1ÞÞ�1 � Sð2ÞðLð2ÞÞ�1 ð45Þ

D̂D ¼
D̂D11 D̂D12 D̂D13

D̂D12 D̂D22 D̂D23

D̂D13 D̂D23 D̂D33

2
4

3
5 ¼ ðLð1ÞÞ�1 þ ðLð2ÞÞ�1 ð46Þ
Eliminating ~qqð2Þ from Eqs. (41) and (42) leads to an equation for qð1Þ ¼ 0 and from the nontrivial solution of

qð1Þ the characteristic equation for the order of stress singularities may be obtained as
kEðdÞk ¼ kCðe2idpU�1 � �UU�1Þ þ ðe2idp � 1ÞDk ¼ 0 ð47Þ

Since the inverse of the matrix U may be expressed as
U�1 ¼ �iðMð1Þ�1

þ �MMð2Þ�1

Þ�1 ¼ ~WW� i~LL ð48Þ

where ~LL is symmetric and positive definite, and ~WW is skew-symmetric, both are 3 · 3 real matrices which

may be expressed as
~LL ¼
~LL11

~LL12
~LL13

~LL12
~LL22

~LL23

~LL13
~LL23

~LL33

2
4

3
5 ¼ ðD̂D� ŴWTD̂D�1ŴWÞ�1

; ð49aÞ

~WW ¼
0 ~ww3 �~ww2

�~ww3 0 ~ww1

~ww2 �~ww1 0

2
4

3
5 ¼ D̂D�1ŴW~LL ¼ ~LLŴWD̂D�1 ð49bÞ
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the characteristic equation may be further rewritten as
kEðdÞk ¼ kðe2idp � 1ÞðC ~WWþ ikC~LLþDÞk ¼ 0 ð50aÞ

where
k ¼ 1þ e2idp

1� e2idp
¼ i cotdp; e2idp ¼ � 1� k

1þ k
ð50bÞ
The expansion of Eq. (50a) is
ðe2idp � 1Þ3½aðcot dpÞ2 � b cot dpþ c� ¼ 0 ð51aÞ

where
a ¼ ð~LL11
~LL33 � ~LL2

13Þ þ f ð~LL12
~LL33 þ ~LL11

~LL23 � ~LL13
~LL23 � ~LL13

~LL12Þ ð51bÞ

b ¼ f ½~ww1ð~LL11 � ~LL13Þ þ ~ww2ð~LL12 � ~LL23Þ þ ~ww3ð~LL13 � ~LL33Þ� ð51cÞ

c ¼ ~ww2
2 � f ~ww2ð~ww1 þ ~ww3Þ ð51dÞ
From Eq. (51a) we find that the characteristic equation for d is
aðcot dpÞ2 � b cot dpþ c ¼ 0 ð52aÞ

since ðe2idp � 1Þ 6¼ 0. This is the characteristic equation for the frictional cracks for general anisotropic

bimaterial. It is known that for isotropic bimaterial the root is )1/2 for frictionless sliding crack problem

and the roots will alter but remain real for the frictional case (Comninou (1977b)). For the present an-

isotropic bimaterial, the roots of Eq. (52a) may be real or complex depending on the values of a, b and c.
For example, for the frictionless crack faces Eq. (52a) becomes
a cot2 dpþ c ¼ 0 ð52bÞ

with a ¼ ~LL11

~LL33 � ~LL2
13 and c ¼ ~ww2

2. Therefore the roots for the frictionless problem are
d ¼ cot�1

�
� i~ww2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~LL11

~LL33 � ~LL2
13

q �
=p ð52cÞ
which are usually complex. In the following we will discuss the roots for some special materials. Let�s first
consider the homogeneous anisotropic materials. Since ~WW ¼ 0 and 2~LL ¼ L for homogeneous material, it is

seen that Eqs. (51b)–(51d) become
a ¼ 1

4
½ðL11L33 � L2

13Þ þ f ðL12L33 þ L11L23 � L13L23 � L13L12Þ� ð53aÞ

b ¼ 0; c ¼ 0 ð53bÞ

Therefore the characteristic equation becomes
ðe2idp � 1Þ3aðcot dpÞ2 ¼ 0 or cotdp ¼ 0; ð53cÞ

so that d ¼ �1=2. Hence for a homogeneous anisotropic solid the stress singularity for a closed crack is

square root no matter whether the frictional resistance exists or not.

4.1. Anisotropic bimaterial

Next let�s consider the anisotropic bimaterial having the property of ~WW ¼ 0, then we immediately find,

from Eq. (51), that b ¼ c ¼ 0 for this material so that the near tip behavior would be the same as the
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homogeneous material as discussed above. Suppose ~WW is not identically zero, but that ð ~WWÞ13 ¼ �~ww2 ¼ 0

and f ¼ 0 then apparently b ¼ c ¼ 0 again, hence the square root singular behavior near the tip will occur

for such frictionless anisotropic bimaterial. If the anisotropic bimaterial are such that the parameter c
defined by Eq. (51d) is zero which results in
~ww2
2 ¼ f ~ww2ð~ww1 þ ~ww3Þ ð54aÞ
then obviously from Eq. (51a) the characteristic roots for such materials are
d ¼ �1=2 and d ¼ cot�1ðb=aÞ=p ð54bÞ

which shows that the roots are all real even if the crack faces possess frictions. Note that the conditions

specified by Eq. (54a) have two possibilities, one is ~ww2 ¼ 0 and the other is ~ww2 ¼ f ð~ww1 þ ~ww3Þ. Both cases are

valid even the frictional coefficient is not zero.

4.2. Monoclinic bimaterial

Next consider monoclinic bimaterial with symmetry plane at x3 ¼ 0. Applying ~ww1 ¼ ~ww2 ¼ 0,
~LL13 ¼ ~LL23 ¼ 0 for monoclinic bimaterial, the corresponding characteristic equation (Eq. (51a)) become
ðe2idp � 1Þ3½aðcot dpÞ2 � b cot dp� ¼ 0 ð55aÞ

where
a ¼ ð~LL11 þ f ~LL12Þ~LL33 ð55bÞ

b ¼ �f ~ww3
~LL33; c ¼ 0 ð55cÞ
Apparently one of the root of Eq. (55a), which is )1/2, corresponds to the anti-plane problem while the rest

corresponding to in-plane problem may be found from the following
cot dp ¼ �fK ð55dÞ

where
K ¼ ~ww3

~LL11 þ f ~LL12

ð55eÞ
The results for in-plane mode are then
d ¼ � 1

2
þ 1

p
tan�1ðfKÞ; �p=2 < tan�1ðfKÞ < p=2 ð56Þ
which shows that the singularity order is always real, no complex roots exist. These real roots are dependent

on the friction coefficient and on the material constants only through the parameter K defined by Eq. (55e).

The order of singularity is usually not square root, but it would become square root for the frictionless case.

The order of singularity versus frictional coefficient is plotted in Fig. 1 for several values of K. Note that the

material parameter K entering in the characteristic equation may also be expressed in terms of reduced
elastic compliance. The result is
K ¼ wð1Þ � wð2Þ

s0ð1Þ11 ðe0ð1Þ � fd 0ð1ÞÞ þ s0ð2Þ11 ðe0ð2Þ � fd 0ð2ÞÞ
ð57Þ
where s0ðiÞmn ði ¼ 1; 2Þ are the reduced elastic compliance defined in Eq. (A.5) (see Appendix A) and those
constants e0ðiÞ, g0ðiÞ and d 0ðiÞ are defined in Eq. (A.3). If the monoclinic bimaterial are degenerated to or-

thotropic bimaterial, we find that the parameter K becomes
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K ¼ ~ww3

~LL11

ð58Þ
since a ¼ ~LL11
~LL33, b ¼ �f ~ww3

~LL33 and c ¼ 0 for orthotropic bimaterial. Expressed in terms of elastic compli-

ance, Eq. (58) becomes
K ¼ wð1Þ � wð2Þ

s0ð1Þ11 e0ð1Þ þ s0ð2Þ11 e0ð2Þ
ð59Þ
Defining for orthotropic bimaterial the generalized Dundurs�s constants âa and b̂b as (Poonsawat et al., 2001;

Ting, 1996)
âa ¼ s0ð1Þ11 e0ð1Þ � s0ð2Þ11 e0ð2Þ

s0ð1Þ11 e0ð1Þ þ s0ð2Þ11 e0ð2Þ
; b̂b ¼ wð1Þ � wð2Þ

s0ð1Þ11 e0ð1Þ þ s0ð2Þ11 e0ð2Þ
ð60Þ
one immediately see that parameter K defined above is exactly the same as b̂b. Hence we may conclude that

the stress singularities for orthotropic bimaterial will depend on the generalized Dundurs constant b̂b only, it

is totally independent of the other constant âa.
4.3. Isotropic bimaterial

If the anisotropic bimaterial are further degenerated to isotropic bimaterial, we find that for isotropic
bimaterial
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ŴW ¼ k̂k1J D̂D ¼ k̂k2I1 þ k̂k3I2 ð61aÞ
where
k̂k1 ¼
l2ð1� 2m1Þ � l1ð1� 2m2Þ

2l1l2

; k̂k2 ¼
l2ð1� m1Þ þ l1ð1� m2Þ

l1l2

; k̂k3 ¼
l2 þ l1

l1l2

ð61bÞ
and the constants a, b and c are
a ¼ k̂k32
k̂k3ðk̂k22 þ k̂k1Þ2

; b ¼ �f ~ww3

k̂k22
k̂k3ðk̂k22 þ k̂k1Þ

; c ¼ 0; ð61cÞ
where ~ww3 ¼ �k̂k1=ðk̂k22 þ k̂k1Þ. With these results, we find that K ¼ k̂k1=k̂k2 which is exactly the Dundurs�s con-
stant b. This agrees with the result given early by Comninou (1977b).
5. Solutions of the singular integral equations

5.1. Homogeneous anisotropic material

The derived coupled singular equations presented in Section 3, i.e., Eq. (26) are for the problem com-

posed by anisotropic bimaterial. Before discussing the phenomena for bimaterial it would be fruitful to
consider the special case of a homogeneous solid, as shown in Eq. (28d). If the crack faces are treated as

frictionless, then the solutions for dislocation densities are sought from the following equations
�1

2p

Z c

�c

L11 L13

L13 L33

� �
b1
b3

� �
dn

n� x1
¼ �S

0

� �
ð62Þ
and the results are
b1
b3

� �
¼ 2S

L11L33 � L2
13

L33

�L13

� �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � x21
p ; jx1j6 c ð63Þ
which are both square root singular at ends of the crack tips and the dislocation densities for isotropic

materials may be recovered from above, i.e.,
b1
b3

� �
¼ S

lj
1
0

� �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � x21
p ; jx1j6 c ð64Þ
where j ¼ 3� 4m for plain strain and j ¼ ð3� 4mÞ=ð1þ mÞ for plain stress. The traction t2 over the crack

faces may be evaluated by the formula
r21

r22

r23

2
4

3
5 ¼

S
�N
0

2
4

3
5þ�1

2p

Z c

�c

L11b1 þ L13b3
L12b1 þ L23b3
L13b1 þ L33b3

2
4

3
5 dn
n� x1

ð65Þ
and the result is
r21

r22

r23

2
4

3
5 ¼

0
� N þ ðL12L33�L23L13ÞS

L11L33�L2
13

� �
0

2
4

3
5 ð66Þ
It is seen that for general anisotropic material the remote applying shear load S will induce normal stress on

the crack faces. This is due to our assumption that the crack faces have no displacement jump in the
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direction perpendicular to the crack faces. These induced normal forces may be zero if the anisotropic

material has the property
L12L33 ¼ L13L23: ð67Þ

Note that this property is automatically satisfied for isotropic material since L12 ¼ L13 ¼ L23 ¼ 0. This

condition stated in Eq. (67) is immediately clear by noting that the displacements of the crack faces in x2-
direction for a homogeneous isotropic material under the only remote shear loading S are
uþ2 ¼ u�2 ¼ ðjþ 1ÞSx1=ð4lÞ; jx1j6 c ð68Þ

which immediately shows that the jump is zero across the crack faces. Hence no normal force is induced

when only shear load is applied. However when the solid is considered to be in general of anisotropic, the

displacement jump in x2-direction would be (Ting, 1996)
uþ2 � u�2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x21

q
ðL�1Þ21S ð69Þ
under the remote shear load only. This jump is usually not zero unless ðL�1Þ21 ¼ 0. The condition

ðL�1Þ21 ¼ 0 is actually equivalent to the condition stated above, i.e., L12L33 ¼ L13L23 which explains the

vanishing of the normal stress over the crack faces for such material. In order to maintain the assumption

that r22 6 0 over the crack faces, the applied normal stress has to satisfy the condition
N P
ðL23L13 � L12L33ÞS

L11L22 � L2
13

ð70Þ
The stresses on the crack line may also be evaluated as
r21

r22

r23

2
4

3
5 ¼

S
�N
0

2
4

3
5�

S
SðL12L33�L23L13Þ

L11L33�L2
13

0

2
64

3
75 1

(
� x1 sgnx1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � c2
p

)
; jx1jP c ð71Þ
Next let�s suppose the crack faces are not frictionless, then the corresponding equations for the dislocation

densities are (28d). The solutions of these equations are
b1
b2

� �
¼ 1

D
L33 þ fL23 �ðL13 þ fL23Þ

�ðL13 þ fL21Þ L11 þ fL12

� �
�S þ fN

fN

� �
2x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x21

p ð72Þ
where
D ¼ ðL12ðL33 � L13Þ þ L23ðL11 � L13ÞÞf þ L11L33 � L2
13
assuming that D 6¼ 0. The solution of Eq. (72) reduces to (64) when f ¼ 0. If the frictional coefficient f
satisfies the following equation:
ðL12ðL33 � L13Þ þ L23ðL11 � L13ÞÞf þ L11L33 � L2
13 ¼ 0 ð73Þ
then D will vanish and this means that the solutions of the dislocation densities b1 and b3 will be nonunique
for the case when frictional coefficient satisfy Eq. (73). The physical meaning of this situation is not clear

and we will assume that D 6¼ 0 in the following discussions. Substituting (72) into Eq. (65), the stresses

acting on the crack faces may be obtained as
r21

r22

r23

2
4

3
5 ¼

S
�N
0

2
4

3
5þ 1

D

ð�S þ fNÞðL11L33 � L2
13Þ � Sf ðL11L23 � L13L21Þ

ð�S þ fNÞðL12L33 � L23L13Þ þ fNðL11L23 � L12L13Þ
fNðL11L33 � L2

13Þ � Sf ðL13L23 � L21L33Þ

2
64

3
75 ð74Þ
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It is interesting to observe that the stresses over the crack faces have been redistributed due to the existence

of the surface roughness. To see more definitely, first let S¼ 0 in Eq. (74) and let us consider the solid under

one single compressive load. The stresses over the crack faces are r22 ¼ �ðL11L33 � L2
13ÞN=D and

r12 ¼ r32 ¼ �fr22. It is seen that the redistributed normal stress on the crack faces is usually not equal to
the applied normal stress N unless either
f ¼ 0
or
L11L23 þ L33L12 ¼ L13ðL12 þ L23Þ ð75Þ
is satisfied. The above two conditions are reached by letting D ¼ L11L33 � L2
13. The first condition of fric-

tionless surface is easily understood. The satisfaction of the second condition of an anisotropic material

allows the material to be able to transmit normal stress across the crack faces without any interference, i.e.,

r22 ¼ �N , even if the surfaces have the roughness property. The meaning of the second condition may be
explained by the following arguments. Noting again that the displacements jump of the crack faces in x1-
and x3-directions for homogeneous anisotropic material under only the remote normal loading N are (Ting,

1996)
uþ1 � u�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x21

q
ðL�1Þ12N ; jx1j6 c
and
uþ3 � u�3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x21

q
ðL�1Þ32N ; jx1j6 c
respectively. The jump in x1-direction would vanish if ðL�1Þ12 is zero. The vanish of ðL�1Þ12 gives rise to the

same condition as Eq. (67), i.e., L12L33 ¼ L23L13. The vanish of the jump in x3-direction would require

ðL�1Þ32 ¼ L11L23 � L12L13 ¼ 0. Hence if an anisotropic material of a solid has these two properties, i.e.,

ðL�1Þ12 ¼ ðL�1Þ32 ¼ 0, then it is clear that the solid with a central crack would undergo no displacement

jump across the crack faces when the solid is subjected to a normal compressive load. This explains the

reason of r22 ¼ �N on the crack faces for such a material when only normal compressive load is applied.

Note that the condition specified in Eq. (75) would be automatically satisfied if the material possesses these

two properties ðL�1Þ12 ¼ ðL�1Þ32 ¼ 0. Next by letting N ¼ 0 in Eq. (74) the stresses over the crack faces due

to pure shear load S only are
r22 ¼ �ðL12L33 � L23L13ÞS=D; r12 ¼ r32 ¼ �fr22 ð76Þ
It is seen again that the satisfaction of the condition (67) will lead to the vanish of all stresses on the crack

faces when the shear load is applied. To maintain the compressive stress r22 6 0 over the crack faces, the

applied normal and shear stresses have to satisfy
N 6
SðL23L13 � L12L33Þ

ðL11L33 � L2
13Þ þ L23ðL12 � L13Þf 2

ð77Þ
5.2. Anisotropic bimaterial

Let us now consider the problem of general anisotropic bimaterial. First we observe from Eq. (26b) that

if ~WW is identically zero then the corresponding equation will be identical to that for a homogeneous ma-
terial, i.e., (28d) and in this situation the square root singular behavior at the tips will be preserved.

Hence the corresponding dislocation solutions and the stresses developed on the crack faces for general
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anisotropic bimaterial are still given by (72) and (74), respectively, with the elements of L replaced by the

elements of 2~LL. It is interesting to observe that for anisotropic bimaterial, as long as ~WW ¼ 0, the stresses

developed on the crack faces are uniformly distributed no mater whether the friction exists or not. Suppose
~WW is not identically zero but, as mentioned before, one of the elements ~ww2 ¼ 0 and the crack faces are
frictionless, then the solution of dislocation densities are still equivalent to the homogeneous one (see Eq.

(28a)). However, the stresses developed on the crack faces for this case are quite different. The results are
r21

r22

r23

2
4

3
5 ¼ �

0

N þ ð~LL12~LL33�~LL23~LL13ÞS
~LL11~LL33�~LL2

13

� �
0

2
64

3
75�

0
ð~ww3

~LL33þ~ww1
~LL13ÞS

~LL11~LL33�~LL2
13

0

2
4

3
5 x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � x21
p ð78Þ
Noting that the normal stress induced by the shear load has two parts. The first part of uniform stresses has

been discussed above. The other part will have square root singular at both ends of the crack and that part

is related to the material constants ~ww1 and ~ww3. The singular behavior of stresses will disappear if the bi-

material have further properties such that ~ww3 ¼ ~ww1 ¼ 0 and this is actually the case of ~WW ¼ 0 as discussed

above. From Eq. (78) we see that near the right crack tip if the normal stress developed on the crack faces is
compressive, then the normal stress near the left crack tip would undergo tensile stress no matter how large

the normal compressive load N is applied unless the applied shear load S is zero. This phenomenon is

unrealistic but it does occur for anisotropic bimaterial.

5.3. Monoclinic bimaterial with symmetry plane at x3 = 0

Suppose the monoclinic bimaterial with symmetry plane at x3 ¼ 0 were considered, it is seen that these

coupled equations (Eq. (26b)) were decoupled as
�1

p

Z c

�c

~LL11 þ f ~LL12 0

f ~LL21
~LL33

� �
b1
b3

� �
dn

n� x1
þ ð�f ~ww3Þ

1 0

1 0

� �
b1
b3

� �
¼ �S þ fN

fN

� �
; jx1j6 c ð79Þ
since ~LL13 ¼ ~LL23 ¼ 0 and ~ww1 ¼ ~ww2 ¼ 0. Two special cases have to be emphasized here, i.e., f ¼ 0 and ~ww3 ¼ 0

because for both cases the above equation will produce square root singular behavior at the tips of the

crack. The situation when ~ww3 ¼ 0 corresponds to the case of ~WW ¼ 0 discussed above. Considering f ~ww3 6¼ 0,

then it is observed that the in-plane behavior (first equation of Eq. (79)) is totally decoupled from the anti-
plane deformation (second equation of Eq. (79)). However, the anti-plane part is influenced by the in-plane

deformation. Solving first equation of Eq. (79) for the unknown b1ðx1Þ and then substituting it into the

second equation of Eq. (79), the dislocation density b3ðx1Þ for the anti-plane deformation can be deter-

mined. The result is
� 1

p

Z c

�c

~LL33b3ðnÞ
n� x1

dn ¼ S � 1

p

Z c

�c

~LL11b1ðnÞ
n� x1

dn; jx1j6 c ð80Þ
The right hand side of the above equation represents the induced force in the anti-plane direction for the

monoclinic bimaterial when only the in-plane forces, i.e., S and N , are applied to the solid. The induced

force in anti-plane direction is due to the assumption of the existence of the frictional surface in that di-

rection. The induced force will vanish if the crack faces are treated as frictionless. It is easy to verify that the

right hand side of the above equation is zero when f ¼ 0. This is an obvious result because for the

monoclinic bimaterial the in-plane deformation is totally decoupled from the anti-plane problem if

the crack faces are frictionless.

Before solving Eq. (79) for the in-plane mode response, one should notice that if the order of singularity
at the right crack tip is d with a known direction of the relative movement of the upper and lower crack

faces being chosen as positive frictional coefficient, then the order of singularity at the left crack tip would
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be 1� d since the relative movement of the upper and lower crack faces with respect to the left crack tip is

just opposite to the right crack tip which accounts for the frictional coefficient should take the minus sign

for the left crack tip. This will result in a different order of singularity for the left crack tip. The singular

integral equation (79) for b1ðx1Þ may be solved analytically by using the formula proposed by Mikhlin
(1964). To obtain a unique solution for that equation, the auxiliary condition of single displacements

around a closed contour surrounding the whole crack should be enforced as in Eq. (27)1. Once the analytic

results for the dislocation density b1ðx1Þ is obtained, density for b3 may be evaluated by Eq. (80). The results

are
b1ðx1Þ
b3ðx1Þ

� �
¼ ðS � fNÞ

�ðS þ fNÞf ~LL11=~LL33

� �
sinðdpÞ

~LL11 þ f ~LL12

x1 � ð2d� 1Þc
ðc� x1Þdðcþ xÞ1�d ; jx1j6 c ð81Þ
with d being given by Eq. (56). It is noted here that the singular nature for b3 is due to the frictional shear

force developed on the crack faces, which is itself singular for most cases. It is also noted that the problem

of frictional interfacial crack under combined shear and compression for isotropic bimaterials has been

treated by Qian and Sun (1998). Our derived singular equation for dislocation density b1, valid here for

monoclinic bimaterials, is the same form as their�s. Hence, our result of Eq. (81) for b1 may be reduced to

that for isotropic bimaterials. As we mentioned above, the order of sigularities for each crack tip is either d
or ð1� dÞ, and the order will be different for each crack tip except the two special cases, either f ¼ 0 or
~ww3 ¼ 0 are considered. For example the dislocation densities for the case ~ww3 ¼ 0 are
b1ðx1Þ
b3ðx1Þ

� �
¼ ðS � fNÞ

�ðS þ fNÞf ~LL11=~LL33

� �
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � x21
p ð82Þ
The dislocation densities corresponding to frictionless case may be obtained by setting f ¼ 0 in the above

equation. With known dislocation densities the stress fields on the interface may be determined as

For jx1j < c
r21ðx1; 0Þ ¼ r23 ¼ �fr22ðx1; 0Þ

r22ðx1; 0Þ ¼ �N � ðS � fNÞ~LL11

~LL11 þ f ~LL12

K sinðdpÞ x1 � ð2d� 1Þc
ðc� x1Þ1�dðcþ x1Þd

 
þ

~LL12

~LL11

!
ð83aÞ
For jx1j > c
r21

r22

r23

2
4

3
5 ¼

S
�N
0

2
4

3
5þ

~LL11ðS � fNÞ
~LL12ðS � fNÞ

f ~LL11ð�S � fNÞ

2
64

3
75 1

~LL11 þ f ~LL12

x1 � ð2d� 1Þc
ðx1 � cÞdðx1 þ cÞ1�d

(
� 1

)
ð83bÞ
It is noted that for the frictionless case the stresses on the interface may be obtained from above by letting

f ¼ 0 and d ¼ 1=2 which are
For jx1j < c
r21ðx1; 0Þ ¼ r23 ¼ �fr22ðx1; 0Þ

r22ðx1; 0Þ ¼ �N � S K
x1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 � x21
p

 
þ

~LL12

~LL11

!
ð84aÞ
For jx1j > c
r21

r22

r23

2
4

3
5 ¼

S
�N
0

2
4

3
5þ

S
ð~LL12=~LL11ÞS

0

2
4

3
5 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 � c2
p

(
� 1

)
ð84bÞ
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It is seen that these results will be reduced to those for isotropic homogeneous materials. It is emphasized

again that for the case ~ww3 ¼ 0 the stresses developed on the crack faces for monoclinic bimaterials are

uniform. Setting ~ww3 ¼ 0 in Eq. (83), we get
r21

r22

r23

2
4

3
5 ¼

S
�N
0

2
4

3
5þ 1

~LL11 þ f ~LL12

~LL11ð�S þ fNÞ
~LL12ð�S þ fNÞ
ð~LL11 þ ~LL21ÞfN

2
64

3
75 ð85Þ
which may also be obtained from Eq. (74) by substituting appropriate material constants in that equation.
As to the case when f ¼ 0, the stresses over crack faces are
r21

r22

r23

2
4

3
5 ¼ �

0

N þ S
~LL11

~ww3x1ffiffiffiffiffiffiffiffiffi
c2�x2

1

p þ ~LL12

� �
0

2
64

3
75; jx1j6 c ð86Þ
which also shows that the normal stress near one of the crack tip may be in tension unless the shear load S
or ~ww3 vanishes. One final remark is that the once the stress fields have been determined, the stress intensity

factors at the crack tips can be extracted directly. For instance, the stress intensity factors at right crack tip

defined by
ðKII;KI;KIIIÞ ¼ lim
x1!c

ð2pðx1 � cÞdðr21; r22; r23ÞÞ ð87Þ
may be easily evaluated from above given stresses fields.
6. Conclusions

A frictionally sliding interface crack embedded in an infinite anisotropic bimaterial subjected to remote

shear and normal compression load is analyzed in this paper. The frictional resistance is assumed to be

uniform over the sliding zone. A set of singular integral equations is formulated. The singularities at the
sliding crack tip are analyzed and the dependence on the material constants is noted. Some interesting

phenomena are observed for anisotropic bimaterial from the investigations of the singular integral equa-

tions. For monoclinic bimaterial, results are given in analytic form. The obtained stresses field on the in-

terface may be reduced to those appearing in the literature.
Appendix A

Starting from the Lekhnitskii�s formalism, the stress singularities investigated in Section 4 may also be
developed. It is known that for monoclinic homogeneous materials with symmetric plane at x3 ¼ 0 the

matrices S, H and L are (Lixin and Ting, 1996)
S ¼ s2

g0

d 0 �b0 0

e0 �d 0 0

0 0 0

2
4

3
5; ðA:1aÞ

H ¼ s011ð1� s2Þ
b0 d 0 0

d 0 e0 0

0 0 v

2
4

3
5; v

�
¼ 1

ls011ð1� s2Þ

�
ðA:1bÞ
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L ¼ s2

s011g02

e0 �d 0 0

�d 0 b0 0

0 0 w

2
4

3
5; ðw ¼ ls011g

02s�2Þ ðA:1cÞ
and
SL�1 ¼ wJ ðA:2aÞ
where
J ¼
0 �1 0

1 0 0

0 0 0

2
4

3
5; w ¼ g0s011 ðA:2bÞ
Constants a0 to g0 are related to pa as follows
p1 þ p2 ¼ a0 þ ib0 ðb0 > 0Þ; p1p2 ¼ c0 þ id 0 ðA:3aÞ
e0 ¼ Imfp1p2ð�pp1 þ �pp2Þg > 0; g0 ¼ s012=s
0
11 � c0 > 0; 1 > s ¼ g0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b0e0 � d 02
p > 0 ðA:3bÞ
Therefore matrices ŴW and D̂D defined in Eqs. (45) and (46) are
ŴW ¼
0 ŵw3 0

�ŵw3 0 0

0 0 0

2
4

3
5 ¼ ðg0ð1Þs0ð1Þ11 � g0ð2Þs0ð2Þ11 ÞJ ¼ ðwð1Þ � wð2ÞÞJ ¼ �ŵw3J ðA:4aÞ
D̂D ¼
D̂D11 D̂D12 0

D̂D12 D̂D22 0

0 0 D̂D33

2
64

3
75 ¼

b0ð1Þs0ð1Þ11 þ b0ð2Þs0ð2Þ11 d 0ð1Þs0ð1Þ11 þ d 0ð2Þs0ð2Þ11 0

d 0ð1Þs0ð1Þ11 þ d 0ð2Þs0ð2Þ11 e0ð1Þs0ð1Þ11 þ e0ð2Þs0ð2Þ11 0

0 0 g1 þ g2

2
664

3
775 ðA:4bÞ
where the reduced elastic compliance s0mn are related to the elastic compliance smn by
s0mn ¼ smn �
sm3s3n
s33

; ðm; n ¼ 1; 2; 3Þ ðA:5Þ
Hence the characteristic equation in terms of reduced elastic compliance is
ðe2ipd � 1Þ3½�f ŵw3D̂D33 þ ikðf D̂D12 � D̂D22ÞD̂D33�½ikðŵw2
3 þ D̂D2

12 � D̂D11D̂D22Þ� ¼ 0 ðA:6Þ
which implies
cot dp ¼ �fK and cotdp ¼ 0 ðA:7Þ
where
K ¼ wð1Þ � wð2Þ

s0ð1Þ11 ðe0ð1Þ � fd 0ð1ÞÞ þ s0ð2Þ11 ðe0ð2Þ � fd 0ð2ÞÞ
ðA:8Þ
It can be shown that this K is the same as
K ¼ ~ww3=ð~LL11 þ f ~LL12Þ ðA:9Þ
defined before.
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