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Abstract

The problem of a frictionally sliding interface crack embedded in an anisotropic bimaterial is investigated. Under
remote normal compressive and shear load the crack faces are treated as completely closed in the direction of the
normal load while in other directions the crack faces are allowed to slide. The frictional coefficient over the sliding zone
is assumed to be constant. A set of singular integral equations is formulated which is valid for general anisotropic
bimaterial. The nature of singularities for frictionally sliding bimaterial is investigated. It is found that for general
anisotropic bimaterial the problem may be treated as a homogeneous anisotropy as long as W = 0 and hence the
stresses developed on the frictional surface would be uniform for such bimaterial. If W is not identically zero but with

(W),; = 0 and with the surface being frictionless then the stresses over the crack faces are square root singular. The
homogeneous anisotropy satisfying (l:),2 = (i,)32 = 0 would transmit the load freely across the crack faces without any
interference. For monoclinic bimaterial, the orders of singularities are found to depend on the material constant A and
the frictional coefficient f and are either of order ¢ or 1 — ¢ depending on the direction of the frictional force. The
stresses on the interface for monoclinic bimaterial are also given explicitly.
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1. Introduction

Most of brittle materials such as ceramics, rocks, glasses and concrete etc. usually contain small and
grain-sized faults that can be simulated as the problem of cracks embedded in an infinite inhomogeneous
solid. When loaded in compression and shear, these cracks will propagate along the crack plane due to the
effect of sliding frictional stresses and the propagation will continue leading eventually to the final failure of
the structure. For some materials the sliding of the crack faces may even lead to the nucleation of tension
cracks starting at the tips of the crack resulting in the so-called branched cracks. Above problems have been
investigated by many researchers in the past two decades, but most of them are for isotropic materials. For
instance Hoek et al. (1984), Horii and Nemat-Nasser (1982), Gorbatikh et al. (2001), Lauterbach and Gross
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(1998), etc. As to isotropic bimaterial, a series of work have been done by Comninou and her co-workers
(1977a,b, 1983). Recently a center frictional interfacial crack in an isotropic bimaterial based on the as-
sumption of completely closed crack has been analyzed by Qian and Sun (1998). Their formulation is
through the singular integral equations. Here we adopt the same approach but the results are valid for
general anisotropic bimaterial.

In this paper, the problem of an interface crack embedded in an anisotrpic bimaterial is investigated. The
bimaterial is subjected to compressive and shear loading at infinity. The crack surfaces are assumed to be
able to slide in its own plane and the frictional coefficient is assumed to be constant over the sliding zone.
The remote compressive force is applied so that crack faces perpendicular to the sliding direction are as-
sumed to be completely closed. This problem is formulated in terms of a set of singular integral equations
where the unknowns in the equations are the dislocation densities. It is found that for general anisotropic
bimaterial the problem may be treated as a homogeneous anisotropy as long as W = 0 and hence the
stresses developed on the frictional surface would be uniform for such bimaterial. This is consistent with the
near-tip analysis of the order of singularities for W = 0 which is square root. If W is not identically zero,
but with w, = 0 and with the surface being frictionless then the stresses developed on the crack faces are
square root singular. The homogeneous anisotropy satisfying (I:)12 = (I:)32 = 0 would transmit the load
freely across the crack faces without any interference. As to monoclinic bimaterial, the in-plane defor-
mation is decoupled from the anti-plane part, however, the anti-plane part may have deformation due to
the frictional force induced by the in-plane load. The orders of singularities at the crack tips, which depend
on the material constant A and the frictional coefficient f, are either of order 6 or 1 — é depending on the
direction of the frictional force. The dislocation densities and the stresses on the interface for monoclinic
bimaterial are evaluated analytically and the results for isotropic materials may be recovered.

2. Basic equations

It is known that the displacement field u = (uy,us,u3)" of a general anisotropic elastic material that
undergoes a generalized plane strain deformation will satisfy, in the absence of body force, the following
governing equation:

Qu;; +(R+RNup+Tuy =0 (1)

where Q, R, T are 3 x 3 matrices whose components are defined only by the material constants Cyy, as

Q = [Ou] = [Citn] (2)
R = [Ry] = [Cisa] (3)
T = [Ty] = [Coua] (4)

The general solutions of Eq. (1) may be expressed as (for more detailed information, please refer to Ting
(1996)):

L WACH S S WANCN (5)

where f, are arbitrary functions and z, = x| + p,x;. a, (« =1,2,3) and p, are determined through the
following eigenvalue problem

{Q+p,(R+R") +p’Tla, =0 (no sum on «) (6)
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To evaluate the stresses, it would be convenient to construct the stress function as

¢ = Zbafa(za) + Zl_)atfcc+3(2a) (7)

where b, (x = 1,2,3) are related to a, by
b, = p,(R" + p,T)a, (no sum on o) (8)
and the stresses 7;; and 1,; (j = 1,2, 3) may then be calculated by just differentiation of the stress function as
T, =—¢;, and 1 =¢;, 9)

In the present investigations, we are going to discuss the stress singularities at the tip of a crack with sliding
surfaces. For such an investigation, it would be more convenient to express the general solutions of the
displacement u (Eq. (5)) and the stress function ¢ (Eq. (7)) in the following form

u=A(f(z.))q+A(f(z.))q (10)
¢ =B(f(z.))q +B(f(z.))q (11)
where

A= [81782,33] (12)

B = [by, b, bs] (13)
[f(z1) 0 0

(fz)=1 0 [flz) O (14)
| 0 0 f(z) ]
f(z) 0 0 ]

(fEz)=1 0 fz) O (15)
| 0 0 f(z)]

and q and ¢ are arbitrary complex vectors.

3. Formulations of the problem

Let us consider an infinite bimaterial composed by two semi-infinite anisotropic materials. A crack with
finite length 2c is situated on the interface which may slide over its crack faces. The bimaterial is subjected
to shear stress S and normal compressive stress N at infinity. In the following analysis normal compressive
stress NV is assumed to be always negative. Due to the remote compressive loading the surface of the crack is
assumed to be always closed in the direction of the compressive load, but is capable of sliding in its own
plane. The frictional force fV may be developed on the crack faces if the surfaces are not frictionless. Here 1
is the frictional coefficient which is assumed to be constant over the crack faces in our analysis. Under these
assumptions, the investigations of this frictional crack problem may be proceeded by the technique of
modeling the crack by a continuous distribution of dislocations. Since the original problem is completely
linear, we may separate the problem into a bimaterial problem that is free of any cracks with stresses
t° = (637,05, agg)T applied at infinity and another problem that is induced by distributed dislocations b
acting on the crack faces. The unknown densities of the distributed dislocations, which are to be sought, are
chosen so that the boundary conditions of original problem are satisfied. To formulate this problem along



6842 J.C. Sung, W.G. Chung | International Journal of Solids and Structures 40 (2003) 68396857

this line, the fundamental solution due to a single concentrated dislocation acting on the crack-free bi-
material has to be constructed. This fundamental solution is introduced briefly in the following.

Based on Ting’s solution (Ting, 1996), the fundamental solution for the displacement u and stress
function ¢ due to a dislocation with Burger’s vector b(= [, by, b3]") located on the interface of the bi-
material is

ull) = _71 (Inr)Sb — [SV(0)S — HV(0)L]b (16a)

o — ‘71 (In /)b + LY (0)S + SV (0)L]b (16b)
for material 1, x, > 0 and

u? = _71 (Inr)Sb — [S?(0)S — H?(0)L]b (17a)

o — ‘71 (InA)Lb + [LO(0)S + 82" (0)L]b (17b)

for material 2, x, < 0, respectively. The matrices S (0), HY () and LY (6) (j = 1,2) in Egs. (16a), (16b)
and (17a), (17b) are periodic in 0 with periodicity =. The matrices S, H, L of Egs. (16a), (16b) and (17a),
(17b) at the interface (0 = 0, ) are defined as

S — _ﬁ*l(S(UT + s<2>T)(H<‘> +H?) = (L + L<z>)—1(s<1>T +SONL (18a)
H={(LY+1L? + SV +8¥)HY + H?)(SV + s?)}! (18b)
L= {H"Y +H?) 4 SV +8P)LY + L) + 8"}~ (18¢)

which show that all these matrices are defined in terms of matrices S, HY and LY (j = 1,2), known as
Barnett-Lothe tensors. These Barnett-Lothe tensors are defined as

HY = 2IAVAY" LY = —2iBYBY" and SY =i(2AVBY" —1) (19a)
which are all real and it can be shown that the following relations may be established
SY =8Y(rn), HY =HY(r), LY =LY(n). (19b)

It is noted that matrices HY and LY possess the properties of symmetry and positive definite. When the
bimaterial is made of identical material, then
-1 1 ~ 1 1 -1 1
_ - - 2qg® —_HD — _Hg® LS PO, g )]
S 2S 2S , H 2H 2H , L 2L 2L (19¢)
Along the bimaterial interface, i.e., along x;-axis, the stress function, for example, ¢(2), may be written as

¢ = % (In |x;|)Lb — H(—x,)Wb (20)

where H (x) is the Heaviside step function. It vanishes when x < 0 and has value 1 when x > 0. W in Eq. (20)

is defined as W = L@'S + S™"L which is skew-symmetric, the components of W are as follows

i 0 W -
W= |- 0 i (1)
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With the known stress function due to a single dislocation applied on the interface, we may evaluate the
traction on the interface as follows
00 (x1,0) 1 - .

t(x,0) = ———-"2%=—Lb+ 5(x;)Whb 22

2(x1,0) o Pt (x1) (22)
where J(x;) is the delta function. Suppose now there are some dislocations with known densities distributed
on the interface over a finite length, then the total tractions induced by these distributed dislocations may be
obtained by just integrating the results of Eq. (22) with b replaced by the dislocation densities. Adding these
tractions induced by these distributed dislocations to the tractions due to the applied stress at infinity, the
total tractions t, across the interface are therefore given as
—1 (< Lb(¢)
t 0)=t°+—
2(x1,0) 2 T L E—x

dé + Wh(x)) (23)

where b(x;) is the dislocation densities distributed over the frictional crack zone (—c <x; <¢) and
t° = (637,05, a§§)T is the stress applied at infinity. Since we are considering the problem of a crack capable
of transmitting normal stress in x,-direction which requires that the displacement jump vanish in that
direction. Moreover, we consider the crack faces which are able to slide in other directions under combined
compression and shear load. Therefore the following boundary conditions for the sliding crack faces,
|x1] < ¢, need to be satisfied

Dul” —Du® =0 (24a)
ctl) =0 =ct)” (24b)
where
1 7 0 000
c=1[0 0 0|, D={0 1 0 (24c)
0/ 1 00 0

and f is the frictional coefficient. Here we assume the frictional coefficients are the same in both x;- and x;3-
directions. Outside the crack zone, i.e., |x|| = ¢, x, = 0, the displacements and tractions must be continuous

6, =t (25a)

a) = g@ (25b)

Hence applying the boundary conditions to Eq. (23), one obtains the set of singular integral equations for
the dislocation densities b as

—1 [<CLb <
Cty +— ﬁ dé+ CWb(x;) =0 (26a)
T —c é — X1
Written explicitly, with t° = (S, —N, O)T, the above equations become
-1 0{1:411+f1:412 1:413+f1:123Hb1} d¢ n { —fws fﬁ’l—ﬁ’szl} _ {—S—i—fN] (26b)
T Lis+ fLyy L3+ fLs | [ b3 ] & —x Wy — fws Sw bs N
with b, (x;) = 0 due to the assumption that crack faces are closed in x,-direction. To ensure unique solutions
for the integral equations, the following conditions have to be satisfied

/ Bi(&)dE=0 and / by(E)de =0 (27)

C

—C
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Note that Eq. (26b) are coupled equations for unknowns b; and b;. If the crack faces are frictionless, the
equations become

S B[] e o] -] o5

—C

These equations are still coupled. However if this frictionless bimaterial have further properties such that
w, = 0 then the solutions of these equations can be treated easily and the behavior of the dislocation
densities will possess the well known square root singularity. If the bimaterial are such that the following
condition

Wy = f(wy +w3) (28b)
is satisfied, then Eq. (26b) becomes

[ bk D] (0] i [ [ e] o5

) o[ Lis+fLy L+ fLy||bs] &—x wi owr || bs N

Suppose the solid is a homogeneous medium, then equations become

=1 [“TLiu+fLy L13+fL23}[b1} d¢ :[SJFfN] (28d)
2n | Lis+fLoy Lz + fLos | | b3 ] & —x SN

since W = 0 and 2L = L for homogeneous solids.

—C

4. Stress singularities at a closed frictionally interfacial crack

Before solving the singular integral equations for the dislocation densities derived in the previous section,
we would first discuss the stress singularities at the interface crack tip. Although the nature of singularities
at the frictionally closed crack tips for general anisotropic bimaterial may be analyzed directly from the
singular equations, it would be more straightforward to adopt the common approach of near-tip expansion
method. To do that, we may choose the complex function (f(z.)) in Eq. (10) to be in the form

(f(z.)) = (=)

therefore the displacement field u and stress function ¢ may be expressed as

u=r"YA<N0) > q+A<CT0) > ¢} (29a)

$=r"{B<0)>q+B <D0 > ) (290)
where

£,.(0) = cos(0) + p. sin(0) (30)

Now, consider the bimaterial that consists of two dissimilar anisotropic half-planes. Let material 1 occupies
the upper half-plane

r>0, 0<0<n
while the lower half-plane

r>0, —-n<60<0
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is occupied by material 2. Employing Egs. (29a) and (29b) for materials 1 and 2, we may have
u) (r, 0) = ! {A<"> <0M0) > q +AY < M (0) > q<f>} (31a)

¢ (r.0) = "1 {BY < 07(0) > ¢ + BY < I7(0) > 49} (31b)

where the superscript (i) (i = 1,2) represents quantities related to material 1 or 2, respectively. It is noted
that on the surface 0 = 0 and 0 = +nx, variable defined in (30) takes the following special values
O =1, = O () = e (32)

*

Since the two anisotropic materials are perfectly bonded along the interface 0 = 0 while the surfaces at
0 = 4 are capable of sliding in both x;- and x;-directions and are always closed in x,-direction, hence the
continuities of displacements and tractions at the interface 0 = 0 require

" (r,0) = ul?(r,0),  ¢\V(r,0) = ¢\ (r,0), (j=1,2,3) (33)
while the sliding boundary conditions at § = -7 may be described as

u(21>(r, T) = ugz)(r, —7), (34a)

03 (r,=m) = —f0%) (r, =), 03 (r,—7) = —f0%) (. ) (34b)

where f denotes the Coulomb’s friction coefficient. Egs. (34a) and (34b) may be expressed in more compact
form as

Du''(r,n) = Du?(r,—n), CtV(r,n) =0=Ct?(r,—7) (34c)

where C and D are defined in Eq. (24¢c). Using the conditions that the surface 0 = 0 should be perfectly
bonded, Egs. (31a) and (31b) will lead to the following results

A(Uq(l) JFA(I)Q(I) :A(2>q(2) +A(2)(1(2) (35a)

BUqM + BVGY = B2q? + B2 (35b)

In order to apply the conditions at § = +x, we need the displacement and stress function at the surface
0 = £ to satisfy

ul® (r,£7) = 7rd+l{eii5nA(l‘)q(z‘) n e:FidnA(i)q(i)} (36a)

¢(i) (I", :|:7I) — _r§+l{e:ti6nB(i)q(i) + e:FiénB@(](i)} (36b)
Since the tractions are perfectly continuous along the sliding surface 0 = =+, i.e.,

o (rm) = P (r,—m),  (1=1,2,3) (372)
use of above condition in Eq. (36b) would get

B 4 e B = e m B | ¢irBRg? (37b)
or

2 Bg) 4 BVGY = BYq® 4 2 B2 (37¢)

Comparing (37c) and (35b), one finds that
¢ = (B®)'BMg" (38a)
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~(2 R(2)\—1 1 1
q( ) — (B( )) B! )q( ) (38b)

Now considering the boundary conditions at 6 = +r which are expressed in Eq. (34c). Enforcing these
conditions will lead to

ei&nDA(l)q(l) + efiénDA(l)(‘i(l) — efiénDA(Z)q(Z) + eiénDA(Z)('i(Z) (393)

¢”"CB"q" + ¢ "CBg" =0 (39b)
Adding these two equations, one obtains

ei&n(CB(]) + DA(I))q(]) + e—iz‘in(cB(l) + DA(]))EI(I) _ e—i&nDA(Z)q(Z) + eiénDA(2)q(2) (40)
Substituting Egs. (38a) and (38b) into (35a) and (40), one obtains

UBVq + TBVg" =0 (41)

e (C + DU)B"q" + (C —DU)B"q" =0 (42)
where

—iU=M""+M?" =D —iW (43)
and

MY = —iBYAY j=1,2 (44)

R 0 VAV3 —Ws

W= |- 0 w |=SH@h) ' -see (45)

w, —w 0
. l:)n @12 1?13 - .
D= 1Dy Dy Dy|= (L) + (L) (46)
D3 Dy Dy

Eliminating ¢ from Egs. (41) and (42) leads to an equation for q'") = 0 and from the nontrivial solution of
q'V the characteristic equation for the order of stress singularities may be obtained as

IE@)[| = [C(e*™ U™ = U™) + (e~ 1)D| = 0 (47)

Since the inverse of the matrix U may be expressed as
U =i + M2 )T Wil (48)

where L is symmetric and positive definite, and W is skew-symmetric, both are 3x 3 real matrices which
may be expressed as

- ;11 1:412 é13
L= Ly Ln Ly
Lz Ly Li

= (D-WD'wW) (49a)

W= [—w3 0 w | =D'WL=LWD' (49b)
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the characteristic equation may be further rewritten as

|E(5)|| = ||(e®™ — 1)(CW +ilCL +D)|| =0 (50a)

where
1+ e 2idm 1-2

)v = 1—76215” = 100t57‘c, € = — 1 T /’L (50b)
The expansion of Eq. (50a) is

(X" — 1)’[a(cot 6m)* — beotdn +¢] =0 (51a)
where

a= (lezn - Z%) +f(Z12Z33 + Ly1Lys — LisLys — leiu) (51b)

b= flwi (L — Li3) + Wa(Lia — La3) + W3(Li3 — L3s))] (5lc)

c=w; — f (W + W) (51d)
From Eq. (51a) we find that the characteristic equation for ¢ is

a(cotdm)* —beotdn+c¢ =0 (52a)
since (€%" — 1) # 0. This is the characteristic equation for the frictional cracks for general anisotropic

bimaterial. It is known that for isotropic bimaterial the root is —1/2 for frictionless sliding crack problem
and the roots will alter but remain real for the frictional case (Comninou (1977b)). For the present an-
isotropic bimaterial, the roots of Eq. (52a) may be real or complex depending on the values of a, b and c.
For example, for the frictionless crack faces Eq. (52a) becomes

acot’on+c¢ =0 (52b)

with @ = Ly, Ly; — iﬁ and ¢ = w}. Therefore the roots for the frictionless problem are
0= CO'[_l < + 117\/2/ Z11Z33 — i%) /7[ (520)

which are usually complex. In the following we will discuss the roots for some special materials. Let’s first
consider the homogeneous anisotropic materials. Since W = 0 and 2L = L for homogeneous material, it is
seen that Egs. (51b)—(51d) become

1

a=7 [(LiiLss — L3y) + f(LiaLss + Lyt Loy — Li3Los — Li3Ly)] (53a)

b=0, ¢c=0 (53b)
Therefore the characteristic equation becomes

(X" — 1)’a(cotdn)* =0 or cotdn =0, (53¢)
so that 6 = —1/2. Hence for a homogeneous anisotropic solid the stress singularity for a closed crack is

square root no matter whether the frictional resistance exists or not.
4.1. Anisotropic bimaterial

Next let’s consider the anisotropic bimaterial having the property of W = 0, then we immediately find,
from Eq. (51), that 5 = ¢ = 0 for this material so that the near tip behavior would be the same as the
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homogeneous material as discussed above. Suppose W is not identically zero, but that (W),; = —, = 0
and /" = 0 then apparently b = ¢ = 0 again, hence the square root singular behavior near the tip will occur
for such frictionless anisotropic bimaterial. If the anisotropic bimaterial are such that the parameter ¢
defined by Eq. (51d) is zero which results in

Wy = [Wa(W1 +w3) (54a)
then obviously from Eq. (51a) the characteristic roots for such materials are
0=-1/2 and & =cot'(b/a)/n (54b)

which shows that the roots are all real even if the crack faces possess frictions. Note that the conditions
specified by Eq. (54a) have two possibilities, one is w, = 0 and the other is w, = f(w; + Ww3). Both cases are
valid even the frictional coefficient is not zero.

4.2. Monoclinic bimaterial

_ Next consider monoclinic bimaterial with symmetry plane at x; =0. Applying w; =w, =0,
L3 = Ly; = 0 for monoclinic bimaterial, the corresponding characteristic equation (Eq. (51a)) become

(%" — 1)’[a(cot 6m)* — beot dn] = 0 (55a)
where

a = (ill +fZ/12)Z33 (SSb)

b=—fwils, ¢=0 (55¢)

Apparently one of the root of Eq. (55a), which is —1/2, corresponds to the anti-plane problem while the rest
corresponding to in-plane problem may be found from the following

coton = —fA (55d)
where
L+ fLis

The results for in-plane mode are then
1 1
5= -3t tan"'(fA4), -m/2<tan"'(fA) < m/2 (56)

which shows that the singularity order is always real, no complex roots exist. These real roots are dependent
on the friction coefficient and on the material constants only through the parameter A defined by Eq. (55¢).
The order of singularity is usually not square root, but it would become square root for the frictionless case.
The order of singularity versus frictional coefficient is plotted in Fig. 1 for several values of A. Note that the
material parameter A entering in the characteristic equation may also be expressed in terms of reduced
elastic compliance. The result is

W) — @

e = fa0) + 57 (e(2) - )
where s'%) (i = 1,2) are the reduced elastic compliance defined in Eq. (A.5) (see Appendix A) and those

constants €', g and d'" are defined in Eq. (A.3). If the monoclinic bimaterial are degenerated to or-
thotropic bimaterial, we find that the parameter A becomes

(57)
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-02

Stress singularity §

'08 T 1T I T 1T I LU I T TT I LI
0 02 04 0.6 08 1
Frictional coefficient f

Fig. 1. The variations of the stress singularity ¢ versus frictional coefficient f for several material constant A.

w3

A= (58)
Ly

since a = Ly;Ls3, b = —fwsLs; and ¢ = 0 for orthotropic bimaterial. Expressed in terms of elastic compli-
ance, Eq. (58) becomes

(1) —_ (2

w w

A = /(1) /(1) /(2) /(2) (59)
s eV +s)7e

Defining for orthotropic bimaterial the generalized Dundurs’s constants & and /§ as (Poonsawat et al., 2001;
Ting, 1996)
S/l(ll) e _ S/(2) o) 2)

11 P
b=

S/l(ll)e/(l) + S/I(IZ)e/(z) 5111

W)

G =
e +s/1(12)e’(2)

(60)

one immediately see that parameter A defined above is exactly the same as ﬁ Hence we may conclude that
the stress singularities for orthotropic bimaterial will depend on the generalized Dundurs constant f only, it
is totally independent of the other constant 4.

4.3. Isotropic bimaterial

If the anisotropic bimaterial are further degenerated to isotropic bimaterial, we find that for isotropic
bimaterial
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W = i(lJ ﬁ = i(zl] + ]AC';IZ (613)
where

oy = (1 —2vi) — iy (1 = 2v,) = (1 —vi) + (1 — Vz)’ iy = 1 + i (61b)

2y My My
and the constants a, b and ¢ are
7.3 7.2
a:%, b:—fﬁ/’;#, CZO, (61C)
ky(k3 + ki) ks (k3 + k)

where w; = _1}1 / (l%% + IAcl). With these results, we find that 4 = lAcl /i(z which is exactly the Dundurs’s con-
stant 5. This agrees with the result given early by Comninou (1977b).

5. Solutions of the singular integral equations
5.1. Homogeneous anisotropic material

The derived coupled singular equations presented in Section 3, i.e., Eq. (26) are for the problem com-
posed by anisotropic bimaterial. Before discussing the phenomena for bimaterial it would be fruitful to

consider the special case of a homogeneous solid, as shown in Eq. (28d). If the crack faces are treated as
frictionless, then the solutions for dislocation densities are sought from the following equations

=1 [“[Ly Lyl|[b] dE =S
_— = f— 2
2n /,C |:L]3 Ly | | b3 | E—x 0 (62)
and the results are
b, 28 |: Ls :| X1
= - —_—, < 63
[b3] LuLyy — Ly | —Lis | /2 =¥ e (63)

which are both square root singular at ends of the crack tips and the dislocation densities for isotropic
materials may be recovered from above, i.e.,

bl S 1 .xl
|:b3:| IuK |:0:| C2_x%7 ‘x1| Cc (6 )

where k = 3 — 4v for plain strain and x = (3 — 4v)/(1 + v) for plain stress. The traction t, over the crack
faces may be evaluated by the formula

021 S 1 e Liiby + Li3bs dé
on| =|—-N +—7'c / Lixby + Lysbs Z_x (65)
o] | O = [ L13b1 + L33bs :

and the result is
[ 21 ] | (LOL —LasLi3)S
o | = | -(V+ ) ©
_0'23_ 0

It is seen that for general anisotropic material the remote applying shear load S will induce normal stress on
the crack faces. This is due to our assumption that the crack faces have no displacement jump in the
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direction perpendicular to the crack faces. These induced normal forces may be zero if the anisotropic
material has the property

LioL33 = Li3Ly;. (67)

Note that this property is automatically satisfied for isotropic material since L, = L13 = Ly; = 0. This
condition stated in Eq. (67) is immediately clear by noting that the displacements of the crack faces in x,-
direction for a homogeneous isotropic material under the only remote shear loading S are

uy = uy = (k+1)8x/(4u), x| <c (68)

which immediately shows that the jump is zero across the crack faces. Hence no normal force is induced
when only shear load is applied. However when the solid is considered to be in general of anisotropic, the
displacement jump in x,-direction would be (Ting, 1996)

uy —u; =24/ —=x}(L"),,S (69)

under the remote shear load only. This jump is usually not zero unless (L*I)21 = 0. The condition
(L*])21 =0 is actually equivalent to the condition stated above, i.e., Li;L33 = L13L,3 which explains the
vanishing of the normal stress over the crack faces for such material. In order to maintain the assumption
that g5, <0 over the crack faces, the applied normal stress has to satisfy the condition

(LysLi3 — LixL33)S

N> 70
LiLy — L3, (70)
The stresses on the crack line may also be evaluated as
721 S ( 5 ) Xjsgnx
S(LypLzz—Ly3L 1 1
on | =[] - | e | mmn 0
023 0 0 e

Next let’s suppose the crack faces are not frictionless, then the corresponding equations for the dislocation
densities are (28d). The solutions of these equations are

[bl} 1 [_L33+fL23 (L13+fL23)} {S+fN} _ (72)

by| ~A|—(Liz+/fLn) Li+fLn /N 2 —x?

where

A= (Lia(Lyy — Ly3) + Los(Lyy — Ly3))f + Lyt Ly — L,
assuming that 4 # 0. The solution of Eq. (72) reduces to (64) when f = 0. If the frictional coefficient f
satisfies the following equation:

(Lia(Lss — Li3) + Los(Liy — Li3))f + LuLss — L}, = 0 (73)

then A will vanish and this means that the solutions of the dislocation densities »; and b3 will be nonunique
for the case when frictional coefficient satisfy Eq. (73). The physical meaning of this situation is not clear
and we will assume that 4 # 0 in the following discussions. Substituting (72) into Eq. (65), the stresses
acting on the crack faces may be obtained as

021 S (=S + /N)(LiiLss — L13) = Sf (LiiLos — LisLay)
02 = —N | + (_S +fN)(L12L33 — L23L13) +fN(L11L23 — L12L13) (74)
023 0 IN(LiLsy — LY;) — Sf (LisLas — LaiLss)

N[ —
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It is interesting to observe that the stresses over the crack faces have been redistributed due to the existence
of the surface roughness. To see more definitely, first let S=0 in Eq. (74) and let us consider the solid under
one single compressive load. The stresses over the crack faces are oy = —(LjjLs; — L3;)N/A and
012 = 03 = —f 0. It is seen that the redistributed normal stress on the crack faces is usually not equal to
the applied normal stress N unless either

f=0
or
Li1Lys + Ly3Ly; = Lis(Lyz + La3) (75)

is satisfied. The above two conditions are reached by letting A = Ly;L3; — L?,. The first condition of fric-
tionless surface is easily understood. The satisfaction of the second condition of an anisotropic material
allows the material to be able to transmit normal stress across the crack faces without any interference, i.e.,
a2 = —N, even if the surfaces have the roughness property. The meaning of the second condition may be
explained by the following arguments. Noting again that the displacements jump of the crack faces in x;-
and x;3-directions for homogeneous anisotropic material under only the remote normal loading N are (Ting,
1996)

”T_”f = cz_x%(Lil)lsz | <e
and
uy —uy; =/c? fx%(L_l)nN, x| <c

respectively. The jump in x,-direction would vanish if (L™"),, is zero. The vanish of (L™"),, gives rise to the
same condition as Eq. (67), i.e., LizL33 = Ly;L13. The vanish of the jump in x;-direction would require
(L*I)32 = Ly1Ly; — L1L13 = 0. Hence if an anisotropic material of a solid has these two properties, i.c.,
(L"), = (L™");, =0, then it is clear that the solid with a central crack would undergo no displacement
jump across the crack faces when the solid is subjected to a normal compressive load. This explains the
reason of g, = —N on the crack faces for such a material when only normal compressive load is applied.
Note that the condition specified in Eq. (75) would be automatically satisfied if the material possesses these
two properties (L"), = (L™");, = 0. Next by letting N = 0 in Eq. (74) the stresses over the crack faces due
to pure shear load S only are

02 = —(LinLss — L3sL13)S/4, 613 =03 = —foxn (76)

It is seen again that the satisfaction of the condition (67) will lead to the vanish of all stresses on the crack
faces when the shear load is applied. To maintain the compressive stress o, < 0 over the crack faces, the
applied normal and shear stresses have to satisfy
S(LysLiz — LizL33)
S (LiLsy — L33) + Los(Liy — Li3)f>

(77)

5.2. Anisotropic bimaterial

Let us now consider the problem of general anisotropic bimaterial. First we observe from Eq. (26b) that
if W is identically zero then the corresponding equation will be identical to that for a homogeneous ma-
terial, i.e., (28d) and in this situation the square root singular behavior at the tips will be preserved.
Hence the corresponding dislocation solutions and the stresses developed on the crack faces for general
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anisotropic bimaterial are still given by (72) and (74), respectively, with the elements of L replaced by the
elements of 2L. It is interesting to observe that for anisotropic bimaterial, as long as W = 0, the stresses
developed on the crack faces are uniformly distributed no mater whether the friction exists or not. Suppose
W is not identically zero but, as mentioned before, one of the elements w, = 0 and the crack faces are
frictionless, then the solution of dislocation densities are still equivalent to the homogeneous one (see Eq.
(28a)). However, the stresses developed on the crack faces for this case are quite different. The results are

o2 ( ! ) (w L 0 L )S X

o LizLy3—LysLi3)S wiLsz+wiLis 1
0| = — (N+ LiLs—L3, ) - Lily—L3, 2 — 22 (78)
023 0 !

Noting that the normal stress induced by the shear load has two parts. The first part of uniform stresses has
been discussed above. The other part will have square root singular at both ends of the crack and that part
is related to the material constants w; and ws. The singular behavior of stresses will disappear if the bi-
material have further properties such that w3 = w; = 0 and this is actually the case of W = 0 as discussed
above. From Eq. (78) we see that near the right crack tip if the normal stress developed on the crack faces is
compressive, then the normal stress near the left crack tip would undergo tensile stress no matter how large
the normal compressive load N is applied unless the applied shear load S is zero. This phenomenon is
unrealistic but it does occur for anisotropic bimaterial.

5.3. Monoclinic bimaterial with symmetry plane at x3 =0

Suppose the monoclinic bimaterial with symmetry plane at x; =0 were considered, it is seen that these
coupled equations (Eq. (26b)) were decoupled as

—1 ¢ Z/“ +fZ12 0 bl dé ~ 1 0 b] o -5 -|—fN

7/_L|: szl i33:||:b%:|€—x1+(_fwg)|:1 0:| |:b3:||: fN :|v |x1|<c (79)
since Ly3 = Ly; = 0 and w; = w, = 0. Two special cases have to be emphasized here, i.e., f = 0 and w; =0
because for both cases the above equation will produce square root singular behavior at the tips of the
crack. The situation when w; = 0 corresponds to the case of W = 0 discussed above. Considering /s # 0,
then it is observed that the in-plane behavior (first equation of Eq. (79)) is totally decoupled from the anti-
plane deformation (second equation of Eq. (79)). However, the anti-plane part is influenced by the in-plane
deformation. Solving first equation of Eq. (79) for the unknown b;(x;) and then substituting it into the
second equation of Eq. (79), the dislocation density b;(x;) for the anti-plane deformation can be deter-
mined. The result is

L Lubs(8) dé = g1 [“Lubi(§)

T

—c f_xl T J_¢ é_xl

¢, |ul<e (80)

The right hand side of the above equation represents the induced force in the anti-plane direction for the
monoclinic bimaterial when only the in-plane forces, i.e., S and N, are applied to the solid. The induced
force in anti-plane direction is due to the assumption of the existence of the frictional surface in that di-
rection. The induced force will vanish if the crack faces are treated as frictionless. It is easy to verify that the
right hand side of the above equation is zero when f = 0. This is an obvious result because for the
monoclinic bimaterial the in-plane deformation is totally decoupled from the anti-plane problem if
the crack faces are frictionless.

Before solving Eq. (79) for the in-plane mode response, one should notice that if the order of singularity
at the right crack tip is 6 with a known direction of the relative movement of the upper and lower crack
faces being chosen as positive frictional coefficient, then the order of singularity at the left crack tip would
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be 1 — ¢ since the relative movement of the upper and lower crack faces with respect to the left crack tip is
just opposite to the right crack tip which accounts for the frictional coefficient should take the minus sign
for the left crack tip. This will result in a different order of singularity for the left crack tip. The singular
integral equation (79) for b;(x;) may be solved analytically by using the formula proposed by Mikhlin
(1964). To obtain a unique solution for that equation, the auxiliary condition of single displacements
around a closed contour surrounding the whole crack should be enforced as in Eq. (27),. Once the analytic
results for the dislocation density b, (x;) is obtained, density for b3 may be evaluated by Eq. (80). The results
are

[bl(xl)}_[ (S — fN) sin(én)  x — (20— 1)c nl<c (81)

by(xi1) |~ [ —(S+/N)fLu/Lx L+ fLi (¢ —x)’(c+x)"°

with J being given by Eq. (56). It is noted here that the singular nature for b3 is due to the frictional shear
force developed on the crack faces, which is itself singular for most cases. It is also noted that the problem
of frictional interfacial crack under combined shear and compression for isotropic bimaterials has been
treated by Qian and Sun (1998). Our derived singular equation for dislocation density b;, valid here for
monoclinic bimaterials, is the same form as their’s. Hence, our result of Eq. (81) for 5 may be reduced to
that for isotropic bimaterials. As we mentioned above, the order of sigularities for each crack tip is either ¢
or (1 — ), and the order will be different for each crack tip except the two special cases, either /' =0 or
w3 = 0 are considered. For example the dislocation densities for the case w; = 0 are

[Zgiﬂ N [(SJ(FS};/;;]\Ql/&JcMz (82)

g
The dislocation densities corresponding to frictionless case may be obtained by setting f = 0 in the above
equation. With known dislocation densities the stress fields on the interface may be determined as

For x| < ¢

021 (-xlvo) =023 = —fo'zz(xho)

02(x1,0) = =N — w (/1 sin(dmn) i (125 — e ‘ I:—”) (83a)
Ly + fLi c—x1) “(c+x)" L
For |x;| > ¢
021 N L1 (S — fN)
{m} = [—N] + | Lu(S—/N) |= = { L _(;25_ 1)‘7175— 1} (83b)
~ L +fL12 (x1 — c)((xl +C) ‘
023 0 fLu(=s—fN) ] ™"

It is noted that for the frictionless case the stresses on the interface may be obtained from above by letting
f =0and 6 = 1/2 which are
For |x|| < ¢
021 (Xho) =023 = —fO'zz(XhO)
L 84a
X1 + 12 ( )
\/ C2 — xf L11

622()61,0) =—-N— S(A

For |x| > ¢

071 S B S~ 1
(b)) = N | + (le/L“)S {2— — 1} (84b)
2 []|o fom
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It is seen that these results will be reduced to those for isotropic homogeneous materials. It is emphasized
again that for the case w; = 0 the stresses developed on the crack faces for monoclinic bimaterials are
uniform. Setting w3 = 0 in Eq. (83), we get

021 S 1 Z,ll(—S—FfN)
on| = | -N|+————|In(=S+ N 85
. | DS+ ) 9
023 0 (L1 + Ly )fN

which may also be obtained from Eq. (74) by substituting appropriate material constants in that equation.
As to the case when f = 0, the stresses over crack faces are

g
on | =~ N+m(rz';%+hz) . nl<e (86)
023 0

which also shows that the normal stress near one of the crack tip may be in tension unless the shear load S
or ws vanishes. One final remark is that the once the stress fields have been determined, the stress intensity
factors at the crack tips can be extracted directly. For instance, the stress intensity factors at right crack tip
defined by

(K, K1, Kur) = xlliLIlL‘Qﬁ(M —¢)’(021, 022, 023)) (87)

may be easily evaluated from above given stresses fields.

6. Conclusions

A frictionally sliding interface crack embedded in an infinite anisotropic bimaterial subjected to remote
shear and normal compression load is analyzed in this paper. The frictional resistance is assumed to be
uniform over the sliding zone. A set of singular integral equations is formulated. The singularities at the
sliding crack tip are analyzed and the dependence on the material constants is noted. Some interesting
phenomena are observed for anisotropic bimaterial from the investigations of the singular integral equa-
tions. For monoclinic bimaterial, results are given in analytic form. The obtained stresses field on the in-
terface may be reduced to those appearing in the literature.

Appendix A

Starting from the Lekhnitskii’s formalism, the stress singularities investigated in Section 4 may also be
developed. It is known that for monoclinic homogeneous materials with symmetric plane at x; = 0 the
matrices S, H and L are (Lixin and Ting, 1996)

2 d —-b 0
S="|e¢ —da 0f, (A.1a)
glo 0o o
b d 0 |
H=s,(1-s)|d ¢ 0], (,(/—> A.lb
e e N (A1)
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2 e -d 0
=gl d b 0y, (= us),87%577) (A.1c)
&l o 0y

N

and
SL™' =wJ (A.2a)
where
0 -1 0
J=|1 0 0f, w=¢gs (A.2b)
0O 0 O

Constants a’ to g’ are related to p, as follows

ptp=d+it (b >0), pp=c+id (A.3a)
r_ = = r_ ro _ g/
e =Im{pp(pr +p2)} >0, g =5,/ - >0, 1>s5= N T >0 (A.3b)

Therefore matrices W and D defined in Eqgs. (45) and (46) are

0 w 0
W= |- 0 0|=(E0—g?I=mw"—-w?)J=—wJ (A.4a)
0 0 0
D“ D1z 0 b Sfl(ll) + @ 5,1(12) 4 S'l(ll) +d'® S'l(12) 0
D=|D, Dy 0 |=]g0 Sfl(ll) +d'® s/l(12) Q) S/l(ll) +@ S/I(IZ) 0 (A.4b)
0 0 D33 0 0 m + Up)

where the reduced elastic compliance s/, are related to the elastic compliance s,,, by

S:nn = Smn T ’ (ma n= 17 27 3) (AS)

§33

Hence the characteristic equation in terms of reduced elastic compliance is

(&3 — 1)’ [—fWsDs3 + iA(f D1y — Do) D3] [iA(W + D}, — D1y D)) = 0 (A.6)
which implies
cotdon = —fA and coton =0 (A7)
where
M 42
LA (A.8)

= S/1(11>(e/(1) — fd'M) + s/1(12)<e/(2) — fd')
It can be shown that this A is the same as

A =1w3/(Li; + fLy,) (A.9)
defined before.
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